Why The World Needs Flarion. Read More

Apache Spark Resource Configuration

From Theory to Practice
By
Ran Reichman
read time
February 5, 2025

Apache Spark's resource configuration remains one of the most challenging aspects of operating data pipelines at scale. Theoretical best practices are widely available, but production deployments often require adjustments to accommodate real-world constraints. This guide bridges that gap, exploring how to properly size Spark resources—from executors to partitions—while identifying common failure patterns and strategies to address them in production.

The Baseline Configuration

Consider a typical Spark job processing 1TB of data. A standard recommended setup might include:

  • A cluster of 20 nodes, each with 32 cores and 256GB RAM
  • Effective capacity of 28 cores and 240GB RAM per node after system overhead
  • 4 executors per node (80 total executors)
  • 7 cores per executor (with 1 core reserved for overhead)
  • 56GB RAM per executor
  • ~128MB partition sizes for optimal parallelism

While this configuration serves as a solid starting point, production workloads rarely conform to such clean boundaries. Let's examine some common failure patterns and mitigation strategies.When Reality Hits: Failure Patterns and Solutions

Failure Pattern #1: Workload Evolution Requiring Infrastructure Changes

A typical scenario: A job that previously ran efficiently on 20 nodes begins to experience increasing memory pressure or extended runtimes, despite configuration adjustments. Signs of resource constraints include:

  • Consistently high GC time across executors (>15% of executor runtime)
  • Storage fraction frequently dropping below 0.3
  • Executor memory usage consistently above 85%
  • Stage attempts failing despite conservative memory settings

Root cause analysis approach:

  1. Analyze growth patterns in your data volume and complexity.
  2. Profile representative jobs to understand resource bottlenecks.

Key scaling triggers:

  • CPU-bound: When average CPU utilization stays above 80% for most of the job duration.
  • Memory-bound: When GC time exceeds 15% or OOM errors occur despite tuning.
  • I/O-bound: When shuffle spill exceeds 20% of executor memory.

If CPU-bound (high CPU utilization, low wait times):

  • First try increasing cores per executor.
  • If insufficient, add nodes while maintaining a similar cores/node ratio.

If memory-bound (Out Of Memory - OOM):

  • First try reducing executors per node to allocate more memory per executor.
  • If insufficient, add nodes with higher memory configurations.

Failure Pattern #2: Memory Exhaustion In Compute Heavy Operations

A typical scenario: Your job runs fine for many days but then suddenly fails with Out Of Memory (OOM) errors. Investigation reveals that during month-end processing, certain joins produce intermediate results 5-10x larger than your input data. The executor memory gets exhausted trying to handle these large shuffles.A possible solution would be to update the configuration to:

  • spark.executor.memoryOverhead: 25% (increased from default 10%)
  • spark.memory.fraction: 0.75 (decreased from default 0.6)

These settings help because they:- Reserve more memory for off-heap operations (shuffles, network buffers)- Reduce the fraction of memory used for caching, giving more to execution- Allow GC to reclaim memory more aggressively

Failure Pattern #3: Data Skew, The Silent Killer

A typical scenario: Your daily aggregation job suddenly takes 4 hours instead of 1 hour. Investigation shows that 90% of the data is going to 10% of the partitions. Common culprits:- Timestamp-based keys clustering around business hours- Geographic data concentrated in major cities- Business IDs with vastly different activity levelsBefore implementing solutions, quantify your skew:

  1. Monitor partition sizes through the Spark UI
  2. Track duration variation across tasks within the same stage
  3. Look for orders of magnitude differences in partition sizes

A possible solution would be to analyze your key distribution and for known skewed keys, implement pre-processing like so:// For timestamp skewval smoothed_key = concat(date_col, hash(minute_col) % 10)// For business ID skewval salted_key = concat(business_id, hash(row_number) % 5)Using Spark’s built-in skew handling helps, but understanding the specific skew of your data is more robust and lasting. Spark’s skew handling configurations:

  • spark.sql.adaptive.enabled: true
  • spark.sql.adaptive.skewJoin.enabled: true

Failure Pattern #4: Resource Starvation in Mixed Workloads

A typical scenario: A seemingly well-configured job starts showing erratic behavior—some stages complete quickly while others seem stuck, executors appear underutilized despite high load, and the overall job progress becomes unpredictable. This is a typical case of resource starvation occurring within a single application.

  1. Late stages in complex DAGs struggle to get resources
  2. Shuffle operations become bottlenecks
  3. Some executors are overwhelmed while others sit idle
  4. Task attempts timeout and retry repeatedly

The root cause often lies in complex transformation chains: sqlCopydata.join(lookup1).groupBy("key1").agg(...).join(lookup2).groupBy("key2").agg(...)Each transformation creates intermediate results that compete for resources. Without proper management, earlier stages can hog resources, starving later stages.Possible solutions include:

  1. Dividing compute-intensive jobs into smaller jobs that use resources more predictably.
  2. If splitting a large job isn’t possible, using checkpoints and persist methods to better divide a single job into distinct parts. (expect a future blog post on these methods)
  3. Applying Spark Shuffle management - setting spark.dynamicAllocation.shuffleTracking.enabled and spark.shuffle.service.enabled to true.

Conclusions & The Path Forward

We've found that most Spark issues manifest first as performance degradation before becoming outright failures. The goal of a data engineering team isn't to prevent all issues but to catch and address them before they impact production stability. While adding resources can sometimes help, precise optimization and proper monitoring often provide more sustainable solutions. Spark offers a robust set of job management tools and settings, but addressing problems through standard Spark configurations alone often proves insufficient.The Flarion platform transforms this landscape in two key ways: through significant workload acceleration that reduces resource requirements and minimizes garbage collection overhead, and by providing enhanced visibility into Spark deployments. This combination of speed and improved observability enables engineering teams to identify potential issues before they escalate into failures, shifting from reactive troubleshooting to proactive optimization. As a result, data engineering teams experience both reduced failure rates and decreased operational burden, creating a more stable and efficient production environment.

Related Posts

Apache Spark 4.0 marks a significant milestone in the framework's evolution toward columnar processing. With enhanced Apache Arrow integration, improved UDF support, and refined plugin architectures, Spark has taken meaningful steps forward. Yet understanding both the advances and the remaining gaps reveals why the journey toward truly efficient columnar processing continues.

The Promise and Reality of Columnar Improvements

Spark 4.0's headline improvements center on Apache Arrow integration. The framework now offers direct DataFrame-to-Arrow conversions, Arrow-optimized Python UDFs achieving up to 1.9x performance improvements, and cleaner APIs for columnar data exchange. These changes particularly benefit PySpark users, who've long suffered from serialization overhead when moving data between JVM and Python processes.

Yet examining Spark's architecture reveals a fundamental reality: the core execution engine remains predominantly row-oriented. While Spark provides hooks for columnar execution through its plugin architecture, the built-in operators - projections, filters, joins, aggregations - still process data row by row through optimized Java code generation. This isn't an oversight but a deliberate design choice that prioritizes compatibility and stability over pure performance.

Where Columnar Support Actually Stands

Understanding Spark 4.0's columnar capabilities requires distinguishing between data format and execution model. Spark has long supported columnar storage formats like Parquet. However, during actual computation, most operations convert this columnar data back to rows for processing.

Built-in SQL expressions execute through Catalyst's code generation, producing tight Java loops that process one row at a time. Complex expressions involving conditionals, nested functions, or custom logic follow this row-wise pattern. The JVM's JIT compiler optimizes these loops well, but they fundamentally lack the vectorized operations that define true columnar processing.

UDF support presents a mixed picture. Pandas UDFs genuinely operate on columnar data, leveraging NumPy's vectorized operations. The new Arrow-optimized Python UDFs improve data transfer efficiency but don't change the scalar execution model - they still process individual values, just with better serialization. Scala and Java UDFs remain entirely row-based, forcing any columnar data to convert back to rows for execution.

The architectural split becomes clear when examining memory management. Spark uses its own ColumnVector implementations for internal operations, not pure Arrow format. Converting between Spark's internal format and Arrow involves either copying or wrapping data, adding overhead that pure columnar engines avoid.

The Performance Gap That Remains

The practical implications become evident in production workloads. Join operations still rely on sort-merge or hash algorithms implemented in Java without SIMD optimization. Aggregations process groups row by row rather than operating on entire column chunks. String operations, mathematical expressions, and date manipulations all follow the same pattern - optimized Java code that processes individual values rather than vectors.

Native columnar engines demonstrate what's possible with true vectorized execution. By leveraging SIMD instructions and processing entire column batches simultaneously, these engines achieve significant speedups - often 2x or more - on the same hardware. This isn't because Spark's code is poorly written; it's because columnar execution with hardware vectorization fundamentally outperforms row-wise processing for analytical workloads.

The memory efficiency gap proves equally significant. Native columnar engines process data in its compressed form, maintaining compression through operations wherever possible. Spark's row-wise operations require decompression and materialization, increasing memory pressure and triggering more frequent garbage collection. For workloads pushing memory limits - a common scenario given how frequently Spark jobs encounter OOM errors - this efficiency difference can determine whether jobs complete successfully.

The Path Forward: Complementary Solutions

Spark 4.0's columnar improvements represent genuine progress, particularly for Python workflows and data interchange scenarios. Yet the core execution engine's row-based nature means achieving optimal columnar performance requires additional components.

Organizations increasingly deploy hybrid architectures that leverage Spark's strengths - distributed orchestration, fault tolerance, broad connector support - while delegating performance-critical operations to specialized columnar engines. Whether through native code execution or hardware acceleration, these complementary technologies fill the gaps in Spark's columnar story. This is precisely where solutions like Flarion's Arrow-based columnar processing provide value - plugging directly into existing Spark deployments to accelerate workloads without requiring code changes, while maintaining the distributed capabilities teams already rely on.

Understanding both Spark 4.0's advances and its limitations enables informed architectural decisions. While Spark takes important steps toward columnar processing, the journey toward truly efficient columnar execution often requires recognizing where additional acceleration provides essential value. For teams facing today's performance challenges - growing datasets, tightening SLAs, and mounting infrastructure costs - combining Spark's orchestration capabilities with purpose-built columnar acceleration delivers the performance modern data platforms demand.

The landscape of data processing has evolved dramatically over the past few years. As datasets grow exponentially, query engines are adapting beyond traditional batch processing. Today's most innovative engines incorporate streaming capabilities to process data incrementally, enabling analysis of datasets larger than available memory while maintaining high performance. Among the leading contenders - Apache DataFusion, Polars, and DuckDB - the approaches to streaming differ significantly, with DataFusion emerging as the clear frontrunner for true streaming applications.

The Evolution of Streaming Query Execution

The term "streaming" has become somewhat ambiguous in the data processing world, spanning several distinct capabilities:

  1. Pipelined execution: Processing data in small chunks through a query plan
  2. Out-of-core processing: Handling datasets larger than available memory
  3. Continuous processing: Executing long-running queries on never-ending data streams
  4. Real-time ingestion: Continuously incorporating new data from external sources

While all three engines we're examining implement some form of streaming, they vary dramatically in their approach and capabilities. DuckDB and Polars primarily focus on the first two points—efficient execution of traditional queries—while DataFusion uniquely addresses all four aspects, providing a foundation for true streaming applications.

DataFusion's Native Streaming Architecture

Apache DataFusion, the Rust-based query engine at the heart of the Apache Arrow ecosystem, was designed with streaming as a core architectural principle. Most physical operators in DataFusion support an "Unbounded" execution mode specifically for handling infinite streams.

DataFusion's streaming architecture delivers several key advantages:

Streaming-First Design: While other engines adapted batch processing for streaming, DataFusion incorporates streaming principles natively. Its physical execution plan includes operators like StreamTableExec and SymmetricHashJoinExec specifically designed for unbounded data. This fundamental design choice enables true continuous query execution.

Streaming Join Support: Where traditional engines struggle with joins on streaming data, DataFusion's SymmetricHashJoinExec operator efficiently joins unbounded streams on the fly. This critical capability unlocks complex real-time analytics that would otherwise require batch window processing.

Arrow Integration: DataFusion processes data in Arrow record batches, providing memory-efficient, zero-copy operations on columnar data. This tight integration with Arrow gives DataFusion significant performance advantages when streaming data between systems or components.

Low-Level API Flexibility: DataFusion provides the foundational building blocks needed to construct sophisticated streaming applications. While higher-level functionality like watermarking is still emerging, its extensible architecture allows developers to implement these capabilities directly.

Polars and DuckDB: Streaming Capabilities

Both Polars and DuckDB offer capabilities related to data processing, though with important limitations for true streaming:

Polars' Streaming Status: Polars previously implemented a streaming execution mode that processed data in batches. However, it's worth noting that this streaming engine has been deprecated, and while the Polars team is working on a new streaming implementation, it's not currently something to build production systems on. Polars continues to excel at single-node workloads where memory isn't a significant constraint, offering exceptional performance for data transformation and analytics.

DuckDB Pipelined Execution: DuckDB employs a vectorized, pipelined execution model that processes data in small chunks (vectors) through query operators. This approach is particularly effective for quick in-memory operations and can handle streaming workloads efficiently when the data volumes definitively fit in memory. DuckDB's columnar architecture and parallel execution make analytical queries remarkably fast for these scenarios.

Neither engine is designed for continuous streaming of unbounded data. Both lack built-in stream ingestion capabilities and don't maintain persistent state across query executions. Each query runs to completion on the data available at execution time.

Choosing the Right Tool for Your Streaming Needs

Understanding the key differences in streaming capabilities helps select the right tool for specific use cases:

For True Streaming Applications: DataFusion stands out when you need continuous processing of unbounded data streams. Its ability to handle streaming joins, process Kafka data directly through StreamTableExec, and maintain state between batches makes it ideal for real-time applications with continuous data flows.

For Large Dataset Processing: Polars and DuckDB excel when processing large files or datasets that don't fit in memory. Their streaming execution modes efficiently handle out-of-core processing for analytics, ETL, and data transformation tasks with excellent performance.

Use Case Examples:

  • Real-time analytics pipeline: DataFusion provides the foundation for building systems that continuously ingest from Kafka and maintain up-to-date results.
  • Large log file analysis: Polars and DuckDB can efficiently process multi-gigabyte log files on modest hardware, even if the files exceed available memory.
  • Periodic batch processing: For scheduled ETL jobs that process accumulated data at intervals, Polars and DuckDB offer simpler implementation with excellent performance.

Each engine shines in its intended domain. DataFusion excels at true streaming while Polars and DuckDB deliver outstanding performance for analytical workloads and large dataset processing.

The Future of Streaming Query Engines

As data volumes continue growing and real-time analytics becomes increasingly critical, each engine is evolving to better serve its core use cases:

DataFusion continues advancing its streaming capabilities with ongoing development focused on:

  • Native watermarking support for proper event-time processing
  • Built-in state checkpointing for fault tolerance
  • Enhanced connector ecosystem for popular streaming sources

Polars and DuckDB continue to optimize their engines for analytical performance within their target domains, with Polars working on a new streaming engine and DuckDB enhancing its vectorized execution capabilities.

At Flarion, we believe in selecting the right tool for each specific task. We're always evaluating the strengths of different engines and are happy to give each one a chance in the domain where it shines. This pragmatic approach means using DataFusion when true streaming capabilities are required, while leveraging Polars for high-performance single-node analytics and DuckDB for quick in-memory operations.

Oops! Something went wrong while submitting the form.