Why The World Needs Flarion. Read More

Vectorized Processing

The Silent Performance Multiplier in Data Systems
By
Ran Reichman
read time
March 18, 2025

Vectorization has emerged as the most critical performance innovation in modern data platforms. At its core, the concept is straightforward: process entire batches of data simultaneously rather than one row at a time. This approach unlocks substantial efficiency gains and has become fundamental to high-performance data systems.

The Birth of Vectorized Processing

The database community first embraced vectorization through pioneering systems like MonetDB and VectorWise in the mid-2000s. These systems addressed the observation that traditional row-by-row processing created significant CPU bottlenecks. Their solution involved processing data in batches small enough to fit in CPU caches, dramatically improving query performance by eliminating per-row function call overhead.

In parallel, the scientific Python ecosystem built NumPy and Pandas around vectorized operations, allowing data scientists to perform bulk calculations orders of magnitude faster than Python loops. These early implementations demonstrated that vectorization represented a fundamental paradigm shift in data processing.

How Vectorization Transforms Performance

Vectorization aligns with modern hardware capabilities through multiple mechanisms:

  • CPU Vector Instructions (SIMD): Modern CPUs include SIMD (Single Instruction Multiple Data) units that can perform the same operation on multiple values simultaneously. These specialized processor features have evolved significantly:


    • SIMD Evolution: From early MMX and SSE instructions processing 128 bits (4 integers) at once, to AVX-256 handling 8 integers, and modern AVX-512 capable of processing 16 integers or floats in a single instruction

    • Hardware Implementation: SIMD registers are wider than standard registers—256 or 512 bits versus 64 bits—allowing a single instruction to operate on multiple data elements

    • Operation Types: Common SIMD operations in data processing include vectorized comparison (generating bitmasks for filtering), arithmetic (sum, multiply, divide entire arrays), and specialized operations like shuffle and gather/scatter

    • Compiler Support: Modern compilers can auto-vectorize simple loops, while high-performance systems use intrinsics (specialized C functions that map directly to SIMD instructions) for maximum control

    • Performance Impact: SIMD instructions can provide theoretical speedups proportional to the vector width—up to 16x for certain operations on AVX-512 systems

  • Memory Efficiency: Columnar data layouts enable sequential memory access, maximizing cache efficiency and minimizing memory stalls.

  • Reduced Overhead: With vectorization, the cost of function calls and interpretation is amortized across hundreds or thousands of values.

A simple example illustrates the difference. Consider summing a column with a million values:

  • Traditional approach: Loop through one million values, with function call overhead for each
  • Vectorized approach: Process 1,024 values at once in a tight loop, leveraging SIMD instructions

The Role of Apache Arrow

Apache Arrow has become the central enabling technology for the vectorization ecosystem. It provides:

  1. Zero-copy columnar memory format: Arrow defines a standardized in-memory columnar representation that allows data to be processed without serialization or deserialization when moving between systems.

  2. SIMD-optimized compute kernels: Arrow includes a library of vectorized operations optimized for modern CPUs, ensuring that as new vector instruction sets emerge (AVX-512, ARM SVE), all Arrow-based systems can benefit.

  3. Cross-language compatibility: Arrow implementations exist across multiple programming languages (C++, Rust, Python, Java, etc.), enabling efficient data exchange between different environments.

  4. Integration across the ecosystem: Major platforms including Spark, DataFusion, Polars, and Velox have adopted Arrow as their interchange format.

  5. Flight protocol: Arrow Flight provides high-performance data transfer between systems using the Arrow format, offering substantial improvements over traditional protocols.

The significance of Arrow lies in its ability to break down silos between previously isolated data systems. A dataset in Arrow format can move seamlessly between a Spark cluster, Python analysis environment, and GPU-accelerated visualization tool with minimal overhead.

The Vectorization Landscape Today

This approach has permeated virtually every corner of the data ecosystem:

Analytical Databases

  • ClickHouse processes data in batches, routinely scanning billions of records per second on a single server
  • DuckDB processes fixed-size batches of 1,024 values, matching dedicated database servers for medium-sized datasets
  • Apache DataFusion operates natively on columnar RecordBatches, performing highly efficient SIMD-enabled computations

Big Data Systems

  • Apache Spark now leverages Pandas UDFs with Arrow as a zero-copy data interchange format, though it still does not use vectorization in its primary flows
  • Databricks Photon replaces row-wise processing with a native columnar engine
  • Meta's Velox provides a unified C++ execution engine with vectorized expression evaluation

Data Science and ML

  • Polars combines Apache Arrow's memory-efficient format with multi-threaded, SIMD-accelerated operations
  • TensorFlow and PyTorch leverage optimized libraries like Intel's oneAPI Math Kernel Library and NVIDIA CUDA
  • Scientific computing applications depend on vectorization to achieve performance at scale

Real-World Impact: Quantifiable Improvements

The performance gains from vectorization translate to measurable improvements:

  • Databricks Photon achieves over 10× speedups on some SQL and DataFrame operations
  • Meta's Velox delivers 6-7× faster performance on heavy analytical queries in production at Facebook
  • CockroachDB's vectorized OLAP engine yields up to 4× speedups in standard analytics benchmarks
  • In machine learning, GPU-accelerated vectorized operations can be 10-100× faster than CPU-based sequential processing

These improvements enable interactive queries on terabytes of data, ML models trained in minutes instead of hours, and scientific simulations at previously impossible resolutions.

The Future of Vectorized Processing

As hardware continues to evolve with wider vector units, more cores, and specialized accelerators, vectorization remains the foundation of high-performance data systems. The convergence between database technology, data science tools, and ML frameworks demonstrates that vectorization has become a fundamental paradigm for modern computing.

Embracing vectorized processing is now essential for delivering the performance required by data-intensive applications across industries and domains.

Related Posts

Apache Spark 4.0 marks a significant milestone in the framework's evolution toward columnar processing. With enhanced Apache Arrow integration, improved UDF support, and refined plugin architectures, Spark has taken meaningful steps forward. Yet understanding both the advances and the remaining gaps reveals why the journey toward truly efficient columnar processing continues.

The Promise and Reality of Columnar Improvements

Spark 4.0's headline improvements center on Apache Arrow integration. The framework now offers direct DataFrame-to-Arrow conversions, Arrow-optimized Python UDFs achieving up to 1.9x performance improvements, and cleaner APIs for columnar data exchange. These changes particularly benefit PySpark users, who've long suffered from serialization overhead when moving data between JVM and Python processes.

Yet examining Spark's architecture reveals a fundamental reality: the core execution engine remains predominantly row-oriented. While Spark provides hooks for columnar execution through its plugin architecture, the built-in operators - projections, filters, joins, aggregations - still process data row by row through optimized Java code generation. This isn't an oversight but a deliberate design choice that prioritizes compatibility and stability over pure performance.

Where Columnar Support Actually Stands

Understanding Spark 4.0's columnar capabilities requires distinguishing between data format and execution model. Spark has long supported columnar storage formats like Parquet. However, during actual computation, most operations convert this columnar data back to rows for processing.

Built-in SQL expressions execute through Catalyst's code generation, producing tight Java loops that process one row at a time. Complex expressions involving conditionals, nested functions, or custom logic follow this row-wise pattern. The JVM's JIT compiler optimizes these loops well, but they fundamentally lack the vectorized operations that define true columnar processing.

UDF support presents a mixed picture. Pandas UDFs genuinely operate on columnar data, leveraging NumPy's vectorized operations. The new Arrow-optimized Python UDFs improve data transfer efficiency but don't change the scalar execution model - they still process individual values, just with better serialization. Scala and Java UDFs remain entirely row-based, forcing any columnar data to convert back to rows for execution.

The architectural split becomes clear when examining memory management. Spark uses its own ColumnVector implementations for internal operations, not pure Arrow format. Converting between Spark's internal format and Arrow involves either copying or wrapping data, adding overhead that pure columnar engines avoid.

The Performance Gap That Remains

The practical implications become evident in production workloads. Join operations still rely on sort-merge or hash algorithms implemented in Java without SIMD optimization. Aggregations process groups row by row rather than operating on entire column chunks. String operations, mathematical expressions, and date manipulations all follow the same pattern - optimized Java code that processes individual values rather than vectors.

Native columnar engines demonstrate what's possible with true vectorized execution. By leveraging SIMD instructions and processing entire column batches simultaneously, these engines achieve significant speedups - often 2x or more - on the same hardware. This isn't because Spark's code is poorly written; it's because columnar execution with hardware vectorization fundamentally outperforms row-wise processing for analytical workloads.

The memory efficiency gap proves equally significant. Native columnar engines process data in its compressed form, maintaining compression through operations wherever possible. Spark's row-wise operations require decompression and materialization, increasing memory pressure and triggering more frequent garbage collection. For workloads pushing memory limits - a common scenario given how frequently Spark jobs encounter OOM errors - this efficiency difference can determine whether jobs complete successfully.

The Path Forward: Complementary Solutions

Spark 4.0's columnar improvements represent genuine progress, particularly for Python workflows and data interchange scenarios. Yet the core execution engine's row-based nature means achieving optimal columnar performance requires additional components.

Organizations increasingly deploy hybrid architectures that leverage Spark's strengths - distributed orchestration, fault tolerance, broad connector support - while delegating performance-critical operations to specialized columnar engines. Whether through native code execution or hardware acceleration, these complementary technologies fill the gaps in Spark's columnar story. This is precisely where solutions like Flarion's Arrow-based columnar processing provide value - plugging directly into existing Spark deployments to accelerate workloads without requiring code changes, while maintaining the distributed capabilities teams already rely on.

Understanding both Spark 4.0's advances and its limitations enables informed architectural decisions. While Spark takes important steps toward columnar processing, the journey toward truly efficient columnar execution often requires recognizing where additional acceleration provides essential value. For teams facing today's performance challenges - growing datasets, tightening SLAs, and mounting infrastructure costs - combining Spark's orchestration capabilities with purpose-built columnar acceleration delivers the performance modern data platforms demand.

The landscape of data processing has evolved dramatically over the past few years. As datasets grow exponentially, query engines are adapting beyond traditional batch processing. Today's most innovative engines incorporate streaming capabilities to process data incrementally, enabling analysis of datasets larger than available memory while maintaining high performance. Among the leading contenders - Apache DataFusion, Polars, and DuckDB - the approaches to streaming differ significantly, with DataFusion emerging as the clear frontrunner for true streaming applications.

The Evolution of Streaming Query Execution

The term "streaming" has become somewhat ambiguous in the data processing world, spanning several distinct capabilities:

  1. Pipelined execution: Processing data in small chunks through a query plan
  2. Out-of-core processing: Handling datasets larger than available memory
  3. Continuous processing: Executing long-running queries on never-ending data streams
  4. Real-time ingestion: Continuously incorporating new data from external sources

While all three engines we're examining implement some form of streaming, they vary dramatically in their approach and capabilities. DuckDB and Polars primarily focus on the first two points—efficient execution of traditional queries—while DataFusion uniquely addresses all four aspects, providing a foundation for true streaming applications.

DataFusion's Native Streaming Architecture

Apache DataFusion, the Rust-based query engine at the heart of the Apache Arrow ecosystem, was designed with streaming as a core architectural principle. Most physical operators in DataFusion support an "Unbounded" execution mode specifically for handling infinite streams.

DataFusion's streaming architecture delivers several key advantages:

Streaming-First Design: While other engines adapted batch processing for streaming, DataFusion incorporates streaming principles natively. Its physical execution plan includes operators like StreamTableExec and SymmetricHashJoinExec specifically designed for unbounded data. This fundamental design choice enables true continuous query execution.

Streaming Join Support: Where traditional engines struggle with joins on streaming data, DataFusion's SymmetricHashJoinExec operator efficiently joins unbounded streams on the fly. This critical capability unlocks complex real-time analytics that would otherwise require batch window processing.

Arrow Integration: DataFusion processes data in Arrow record batches, providing memory-efficient, zero-copy operations on columnar data. This tight integration with Arrow gives DataFusion significant performance advantages when streaming data between systems or components.

Low-Level API Flexibility: DataFusion provides the foundational building blocks needed to construct sophisticated streaming applications. While higher-level functionality like watermarking is still emerging, its extensible architecture allows developers to implement these capabilities directly.

Polars and DuckDB: Streaming Capabilities

Both Polars and DuckDB offer capabilities related to data processing, though with important limitations for true streaming:

Polars' Streaming Status: Polars previously implemented a streaming execution mode that processed data in batches. However, it's worth noting that this streaming engine has been deprecated, and while the Polars team is working on a new streaming implementation, it's not currently something to build production systems on. Polars continues to excel at single-node workloads where memory isn't a significant constraint, offering exceptional performance for data transformation and analytics.

DuckDB Pipelined Execution: DuckDB employs a vectorized, pipelined execution model that processes data in small chunks (vectors) through query operators. This approach is particularly effective for quick in-memory operations and can handle streaming workloads efficiently when the data volumes definitively fit in memory. DuckDB's columnar architecture and parallel execution make analytical queries remarkably fast for these scenarios.

Neither engine is designed for continuous streaming of unbounded data. Both lack built-in stream ingestion capabilities and don't maintain persistent state across query executions. Each query runs to completion on the data available at execution time.

Choosing the Right Tool for Your Streaming Needs

Understanding the key differences in streaming capabilities helps select the right tool for specific use cases:

For True Streaming Applications: DataFusion stands out when you need continuous processing of unbounded data streams. Its ability to handle streaming joins, process Kafka data directly through StreamTableExec, and maintain state between batches makes it ideal for real-time applications with continuous data flows.

For Large Dataset Processing: Polars and DuckDB excel when processing large files or datasets that don't fit in memory. Their streaming execution modes efficiently handle out-of-core processing for analytics, ETL, and data transformation tasks with excellent performance.

Use Case Examples:

  • Real-time analytics pipeline: DataFusion provides the foundation for building systems that continuously ingest from Kafka and maintain up-to-date results.
  • Large log file analysis: Polars and DuckDB can efficiently process multi-gigabyte log files on modest hardware, even if the files exceed available memory.
  • Periodic batch processing: For scheduled ETL jobs that process accumulated data at intervals, Polars and DuckDB offer simpler implementation with excellent performance.

Each engine shines in its intended domain. DataFusion excels at true streaming while Polars and DuckDB deliver outstanding performance for analytical workloads and large dataset processing.

The Future of Streaming Query Engines

As data volumes continue growing and real-time analytics becomes increasingly critical, each engine is evolving to better serve its core use cases:

DataFusion continues advancing its streaming capabilities with ongoing development focused on:

  • Native watermarking support for proper event-time processing
  • Built-in state checkpointing for fault tolerance
  • Enhanced connector ecosystem for popular streaming sources

Polars and DuckDB continue to optimize their engines for analytical performance within their target domains, with Polars working on a new streaming engine and DuckDB enhancing its vectorized execution capabilities.

At Flarion, we believe in selecting the right tool for each specific task. We're always evaluating the strengths of different engines and are happy to give each one a chance in the domain where it shines. This pragmatic approach means using DataFusion when true streaming capabilities are required, while leveraging Polars for high-performance single-node analytics and DuckDB for quick in-memory operations.

Oops! Something went wrong while submitting the form.